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Abstract—We present a data-driven methodology for inferring
anomalies in photovoltaic (PV) power generation signals, based
on a set of nearby generators. Our approach models correlations
between nearby PV generators over a sliding time window. Our
novel, white-box machine learning approach has three important
components: (1) a time-dependent, multi-periodic quantile model
of the individual power signals, which is used for marginal
normalization of observed signals, (2) a linear regression model
that predicts the normalized power output of a system at a given
time based on a “neighborhood” of measurements across systems
and time, and (3) a traditional binary classification algorithm.
Model fitting is achieved via convex optimization, which provides
globally optimal solutions in polynomial time.

Index Terms—PV systems, anomaly detection, operations
and maintenance, convex optimization, machine learning, inter-
pretable models, artificial intelligence

I. INTRODUCTION

The photovoltaic (PV) solar generation capacity in the
United States has grown at an average of 22% annually over
the last decade and accounted for 53% of new generating
capacity in 2023, the first time in 80 years that a renewable
energy resource was a majority of capacity addition [1]. Fast
and accurate analysis of plant operating conditions from field
data is critical for maximizing system energy yield providing
a reliable operating capacity to serve the electrical grid.

In this paper, we study the problem of performing (near)
real time anomaly detection on a PV fleet, i.e., classifying
operational issues in PV systems such as string outages or
stuck trackers as they occur (rather than retrospectively in
a historical data set). We assume access to time series of
power production from a collection of PV generators that have
correlated outputs. We present a supervised machine learning
method for labeling the daily output of a given PV generator as
containing a partial outage, given the daily output of the other
systems in the fleet. We test the method on real PV power data
from 9 rooftop PV systems in Orange County, CA, introducing
known synthetic outages for both training and testing, and we
show that it outperforms both a naive baseline and an off-the-
shelf machine learning model.

II. RELATED WORK

A. PV outage and anomaly detection

There exists significant literature on detecting partial out-
ages in PV system field data, based on both traditional
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modeling [2], [3] and machine learning approaches [4]-
[6]. As described in [7], the “industry standard” solution to
anomaly detection in utility power plants (PV and otherwise)
is “advanced pattern recognition” (APR) software, which the
authors note can be difficult to use effectively and is easily
outperformed. These methods operate on a single PV system at
a time (as opposed to working with a fleet of power generation
signals) and tend to be concerned with classifying different
fault categories.

B. Machine learning models for PV fleet data

Deep learning methods have recently been a popular choice
for predicting PV generator output based on neighboring
systems for purposes of forecasting, imputation, and anomaly
detection [8], [9]. These methods employ deep neural networks
with large numbers of parameters, which require special com-
putational hardware to train [10]. The fundamental structure of
the approaches taken in these papers—train a statistical model
to predict a time-series based on neighboring time-series—is
similar to the methods proposed in this paper.

C. Quantile transform

Quantile transforms are well known with popular implemen-
tations in packages such as sklearn [11]. Our method differs
in two important ways: (1) we estimate time-varying quantiles
instead of the quantiles of the bulk distribution, and (2) we
base the transform on 11 quantile estimates (rather than 100s
or 1000s) at the levels [0.02,0.1,0.2,...,0.8,0.9,0.98].

D. Our contributions

We present a tightly scoped machine learning pipeline,
designed for the task of detecting the partial loss of power
production in a PV fleet. This method is comprised of distinct
steps that are interpretable and auditable. We emphasize that
the calculations carried out for this paper were all performed
on standard laptops with no special compute hardware. The
most computationally intensive portion of the work is the
fitting of the quantile transform described in §III-B, which
can take up to 5 or 10 minutes per PV system. However, this
process may be carried out in parallel for large numbers of
systems, enabling the scaling to very large fleets. The fleet
is “coupled” through the linear regression model described
in §III-C, for which highly efficient solution methods exist
even for very large problems.



III. METHOD

We assume access to power time series measurements for
a collection of K+1 PV generators. In this paper, we will
describe a method for performing outlier or anomaly detection
for one generator, based on the observed measurements from
the remaining K generators, which we will refer to as the
“target generator” and the “reference generators” respectively.
Our proposed method is summarized as follows:

1) transform data to be marginally Gaussian

2) predict target system output from reference systems

3) classify residuals of prediction as containing partial
outage or not

We propose a method for learning the model from training
data that is expressive but quite interpretable. Our approach to
machine learning is based on convex optimization [12], which
guarantees globally optimal solutions in polynomial time.

A. Data preprocessing

We begin by on-boarding and cleaning the data with Solar
Data Tools [13], [14], which flags days with major operational
issues (full outages and similar) and performs basic data
filling (linear interpolation during daytime and zero-filling at
nighttime), described in more detail in [15]. Days flagged as
having operational issue are removed from subsequent model
training and testing.

Next, we perform a dynamic time dilation operation which
removes nighttime values and standardizes the number of value
in each day to be exactly 100, spaced evenly between sunrise
and sunset, while maintaining the correct energy content of the
signal, as described in [16]. This processes is demonstrated
in figure 1. The number of points in the dilated days is an
algorithm hyperparameter, and we generally find that a good
rule of thumb is to not aggressively down-sample or up-sample
the signal. We are using 5-minute data in this study, which
has 288 measurements per day, meaning on average daytime
covers have of that (more in the summer and less in the
winter), or 144 measurements. In practice, we found that the
classification performance explored in this research was not
very sensitive to this parameter. A subroutine to carry out this
dilation is available in Solar Data Tools.

B. Normalizing quantile transform

Nearby PV systems exhibit strong correlation, but they often
do not have a simple linear relationship, as demonstrated in
figure 2 (left). We note the “leaf shape” in the plot, defined by
an outer loop and inner bar. The two systems have different
orientations, one more pointed east and one more pointed
west. On sunny days, the east-pointing system produces higher
power in the morning relative to the west-pointing system, and
this relationship is reversed in the afternoon, creating the outer
loop. On overcast days, when the irradiance is mostly diffuse,
the orientation of the systems is irrelevant, creating the inner
bar.

We propose a transformation to the data that explicitly
addresses this nonlinear, time-dependent structure. We fit
smooth, multiperiodic quantiles to each power signal, as
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Fig. 1: An example power time-series before (top) and after
(bottom) time dilation. The top plot is marked with the sunrise
and sunset times estimated automatically with SDT (yellow)
and the days flagged by SDT as having operational issues
(red).
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Fig. 2: Scatter plot of target data and data from one reference
system before (left) and after (right) quantile normalization.
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Fig. 3: An example of smooth, multi-periodic quantiles fit to
PV power data.



—— Normal PDF
0.5 B Linear Model

=25 0.0 25 75 10.0 12.5

5.0
Transformed Signal

—— Normal PDF
05 Asymptote Model

0.0
-4 -2

0
Transformed Signal

Fig. 4: The bulk distribution of transformed PV power data
with linear extrapolation (top) and asymptotic extrapolation
(bottom).

described in [16]. Figure 3 shows an example of quantiles
fit to PV power time-series data. These quantiles describe the
likelihood of observing a certain power output at a particular
time on a particular day, i.e., at the 0.4 quantile, there is a
40% probability that the power will be below that level. Note
how the quantiles collapse to zero at night when there is no
power production.

The transformation function is constructed as a linear in-
terpolation between estimated quantile levels, resulting in a
family of transfer functions indexed in time. Note that we
only fit 11 quantiles levels, as opposed to 100s or 1000s, as
is common for standard quantile transformation implementa-
tions. This significantly reduces the computation time (which
scales with the number of estimated quantiles) and is justified
by numerical experiments that show that increasing the number
of quantiles has minimal impact on this problem.

We also need to handle extrapolating the transformation
function outside the minimum and maximum fit quantiles,
0.02 and 0.98, respectively (we expect 4% of observed data
to fall outside these levels). A natural choice might be lin-
ear extrapolation; choosing the slope of the closest internal
segment (i.e., the extrapolation below 0.02 would take the
slope of the segment between 0.02 and 0.1). However, we find
that this is a poor choice in practice for PV power data. We
therefore propose an asymptotic extrapolation method. On the
lower tail, we use a vertical asymptote at (or just below) zero,
representing our prior knowledge that power values are not
negative. On the upper tail, we use a horizontal asymptote at
a value of 4.26, which corresponds to the quantile function of
the normal distribution, evaluated at a quantile level of 0.9999.
This represents our prior believe that we do not expect to
observe values that have a probability of occurrence of less

than 0.01%. In practice, we find that extrapolating with these
asymptotic functions results in transformed data with tails that
are more Gaussian, as shown in figure 4. The vertical and
horizontal asymptotes are implemented by fitting a logarithmic
and exponential function respectively. The logarithm barrier
function with an asymptote at x( has the form

f(z) = Blog a(x — xp),

and the exponential barrier function with an asymptote at yg
has the form

9(x) = yo + cvexp(Bi).

Each function has two free parameters, o and (3, which can
be solved for analytically by matching the value and slope
of the transform function at the boundary quantile. Quantile
fitting and data transformation was carried out with the spcge
Python package [17].

C. Statistical model

Given power time-series data from K+1 PV generators that
have been dilated and transformed as described above, we
construct features from the K reference systems to predict
the standardized power of target system. We propose a linear
model that is nonetheless expressive and accurate, while being
robust to uncertain training data and fast to fit (<1 second on a
standard laptop). The features are the measurements from the
reference systems, not just at the time of prediction, but over
a window of times as well, i.e., leading and lagging values.

Let yq¢ € Rfor t =1,...,100 be the standardized power
of the target system at each of the index points on some
dilated day, d. Let z4; € R"™ be a vector of measurements
from our reference systems on the same day. Specifically,
we will use the standardized power measurements at index
points {t—3,t—2,t—1,¢,¢t+1,t+2,t+3}—i.e., a window of
seven values centered at the time index of interest— from each
of the K reference systems, giving n = 7K. Our statistical
model is

Yd,t = atTJUd,t + €dt,

where 0; € R" is a vector of coefficients (to be determined by
model fitting) and €4, € R is the residual error. We note that
the described features only make sense for ¢t = 4,5,...,96,97,
so we will only fit £ = 94 linear models. We can compactly
represent all £ models by defining the following. Let 34 € R’
be the vector of target values on day d, and let © € RO
be a matrix containing of the coefficients as rows. Finally, let
X, € R be a matrix containing the reference features as
columns. Then, our model is represented in vectorized form
as
yq = diag (0Xy) + €4,

where ¢; € R’ is a vector of residual errors and diag(-) is
the standard matrix-to-vector diagonal operator, which returns
the diagonal entries of a square matrix as a vector.

In this form, we make some observations about the structure
of ©. The rows of this matrix correspond with the coefficients
for making a prediction point in time (i.e., at index t). The



columns correspond to the coefficients for each of the K
reference systems at a given lag in time relative to the
prediction time. The first column corresponds to reference
system 1 at a lag of —3 time steps, and the fourth column
corresponds to a lag of zero in the same system, ie., the
measured power from that reference at the time of prediction.
We expect the model to change slowly over the course of
the day because the contribution of a reference at a given
lag should not change drastically from, e.g., 10:00AM to
10:05AM. In other words, the columns of © should be smooth.
Motivated by this prior belief and empirical testing, we directly
impose a smooth structure on the columns of © as follows.
Let B € R“*7 be a basis matrix of Chebyshev polynomials
(of the first kind) of order ¢ (see, e.g., [18]). Then, let © =
B®, with ® € R9*™. Our statistical model then becomes

yq = diag (B®X,) + €4,

with parameters ®. We select a modest order, such as ¢ = 8
and note that ¢ < ¢, so this also imposes a low-rank structure
on O in addition to column smoothness, while reducing the
total number of parameters to estimate. We find in practice that
this constraint increases the out-of-sample prediction accuracy
of the model.

D. Model implementation and fitting

We segment the measured power data into training and
test sets. With respect to the training set, we solve the ridge
regression problem,

minimize ), || diag (B®X4) — yall3 + A @)%, (D)

with variable ® and where the sum is over all days d in the
training set. A is a weight on the ridge regularization term,
which is set through cross-validation. Problem (1) is not only
convex [12], but it is a linear least-squares problem and can be
solved with standard methods [19]. We used the least squares
module from NumPy [20], with solution times on the order of
half a second on a standard laptop for a given value of A.

E. Residual analysis

As a final step, we propose to train a supervised classi-
fication model to predict whether a day contains a partial
outage based on the residuals between the actual and predicted
power of the target systems over the course of the day. This
is a classic binary classification problem on a modest (R%®)
feature space, so many possible off-the-shelf algorithms are
available [21], [22]. In §IV we summarize the test performance
of many common classifiers.

To formulate this task as a supervised learning problem,
we need high-quality labeled data with and without outages.
To accomplish this, we construct a partial outage generation
model, which applies a random partial outage to the real
daily output of a PV system. The process is described in the
following.

F. Synthetic partial outage generation

We generate randomized partial outages as follows:

1) With 50/50 probability, select either (a) full-day outage
or (b) partial-day outage

2) If partial-day outage, pick start and end times of outage
uniformly between sunrise and sunset times

3) Select an outage level with uniform probability between
0 and 100% (no loss and full loss, respectively

We apply this outage generator to every day in the training
and test data sets. The binary classifiers, therefore, learn to
discriminate between days with a partial outage and those
without. More details about the numerical experiments are
given in §IV.

G. Baseline models

We also introduce two baseline models to which we com-
pare the performance of our proposed method. The first
baseline is the naive “random predictor,” which always always
selects True or False with 50% probability. Our classes
are balanced in training and testing, so this is equivalent to
random guessing. This model always has an accuracy and f-
score of (roughly) 50%; it is a sanity check for our procedure
and results. The second baseline is an end-to-end (e.g., “out
of the box”) XGBoost predictor [23]. This model is trained
on the labeled partial outage data, with the features being the
actual outputs of all K+1 systems. We apply only the time
dilation portion of our pre-processing pipeline before end-
to-end XGBoost training. Our purpose is to test our highly
engineered approach to a standard machine learning tool, but
we find that removing the night time data and standardizing
day length significantly improves statistical models of this
kind, and we allow the standard approach to use this “assist”.
(Note that using the entire 24-hour period forces a statistical
model to learn to ignore roughly 50% of the features, when
the sun is not shining.)

H. Intraday outage labeling

As a final processing step, we introduce a strategy that aims
to identify the specific time periods within a day during with
the failure was likely to have occurred. This step was added
to anticipate possible operational needs of the solar industry,
as such information could be useful for further troubleshoot-
ing or categorization of outage types (i.e., extended versus
intermittent events). We present this as a “bonus” to the main
classification pipeline presented in this manuscript.

This method is based on a Hidden Markov Model (HMM)
with two hidden states — failure and no failure. An HMM is
a probabilistic model where the latent variable is assumed to
follow a Markov chain, and the model emits an observable
variable whose distribution depends on the current hidden
state [24].

Using training data, we estimate the conditional densities
p(ri|zt), where 7, is the residual at time ¢, and z; is the
hidden state. These densities can be estimated either para-
metrically (using Laplace and Johnson’s SU distributions) or
non-parametrically (using Gaussian kernel density estimation),



Fig. 5: Relative locations of the 9 residential PV systems
selected for this study. A circle is drawn for reference with
a radius of 1.25 miles.
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Fig. 6: Estimated O for K = 4. The coefficients corresponding
to each target system are separated by black lines.

with little impact on the final performance of the model.
At inference time, we compute the posterior distribution
t — p(z¢|ri.r) using the forward-backward algorithm [24,
§A.5].

While the HMM can also be employed as the primary binary
classifier to determine if an outage occurred on a day, our
experiments show that standard machine learning classifiers
perform better for this task. Instead, we tune the HMM method
to find the most likely periods of an outage given our prior
belief that a partial outage did occur. So, the HMM acts as a
“postprocessor” that takes a prediction of a daily outage and
estimates the most likely times for the outage to occur.

IV. RESULTS

We demonstrate the proposed methods on real data from 9
residential PV systems in Southern California within roughly
two miles of each other, with overlapping data covering a time
period of June 13, 2017 to March 30, 2019, for a total of 655

method accuracy f-score discrimination
ensemble 0.908 0.903 0.815
SVMrbf 0.906 0.900 0.813
PCA+LR 0.897 0.892 0.794
XGB 0.895 0.891 0.791
LR 0.891 0.887 0.781
PCA+QDA 0.876 0.870 0.755
End2EndXGB 0.857 0.842 0.714
PCA+LDA 0.841 0.813 0.683
LDA 0.819 0.797 0.642
QDA 0.772 0.791 0.550
Gaussian z-score 0.729 0.713 0.474

TABLE I: Table classification methods along with their accu-
racy and f-score.

consecutive days. A satellite image with the sites marked is
shown in figure 5. After cleaning the data and removing days
with known operational issues, we split the data sequentially
into train and test sets, using an 80/20 split with 405 days
in the train set and 102 days in the test set. (We note that
out-of-sample prediction is easier with a random, rather than
sequential, hold-out set because of distributional shift. We
choose the more difficult configuration.)

A. Linear model ablation study

To evaluate the efficacy of including a “neighborhood” of
PV systems in the linear regression model, we perform a quick
ablation study, using 1 of the 9 PV systems as the target. We
fit three linear models on the test data using the K = 1,4, and
8 closest neighbors. We find the root-mean-square error on the
test data to be 0.632, 0.450, and 0.432, respectively, showing
increased accuracy on out-of-sample prediction with more
reference systems. (Note that after quantile normalization,
the data are all mean-zero and unit-variance.) The parameter
matrix O for the K = 4 case is shown in figure 6 as a heatmap
over the entries of the matrix. The black lines delineate the
grouping of coefficients associated with each of the 4 reference
systems. The top rows correspond to morning predictions, and
the bottom rows to afternoon predictions. The magnitude of
the coefficients tell us the amount of “attention” the model
is paying to the different reference systems and lag time.
Interestingly, we find that the attention the model pays to the
first reference system shifts over the course of the day from a
lag of 0 to a lag of —2. Note how the values in each column
change smoothly over the course of the day.

B. Classifier performance

We run 45 independent experiments as follows. We iterate
over each of the 9 PV systems as the target and train 9 linear
regression models on the remaining reference systems over
the training data. For each target, we take 5 random samples
from the outage generator for each day in the train and test
sets. The classifiers are trained 5 times for each target, for a
total of 45 trained classifiers, using cross-validation to tune
algorithm hyperparameters as needed. Finally, The classifiers
are tested on each of the 45 instances of test data, and the
accuracy of methods is evaluated over all 45 experiments.



| predicted false predicted true | roral

real false 4,400 190 4,590
real true 659 3,931 4,590
total \ 5,059 4,121 \ 9,180

TABLE II: Partial outage classification confusion matrix for
the ensemble model.

| miss positive  detect positive | rotal

miss negative 0 190 190
detect negative 659 3,741 4,400
total \ 659 3,931 \ 4,590

TABLE III: Partial outage pairwise discrimination results for
the ensemble model.

We selected the following classifiers for testing, in increas-
ing order of complexity: Gaussian z-scores, linear discriminate
analysis (LDA), quadratic discriminant analysis (QDA), logis-
tic regression (LR), support vector machines with a radial basis
function kernel (SVMrbf), and XGBoost (XGB). Additionally,
we tried applying principle component analysis (PCA) dimen-
sionality reduction before applying these methods. Finally,
we tested a bagged “ensemble” model containing PCA+LR,
PCA+QDA, SVMrbf, and XGB, combined using a “soft-
voting” procedure [25]. A summary of classifier performance
is given in table I. The best performing model is the en-
semble, marked in yellow. The two baselines are marked in
red (random predictor) and orange (end-to-end XGBoost). In
addition to the standard binary classification metrics, accuracy
and f-score, we also include the discrimination fraction, i.e.,
the fraction of outage/no-outage day pairs in which both
days are correctly labeled. Because the partial outage data
is synthetically constructed from real data with no outages,
we can treat the data points as pairs rather than independent
samples, and score the methods on their skill at separating
these pairs. We find that the random predictor (red) is quite
poor, with all proposed models significantly outperforming it.
We also note that the end-to-end model (orange), which by-
passes the proposed linear regression model and calculation
of target residuals, performs reasonably well, outperforming a
number of residual classification algorithms. However, XG-
Boost applied to the residuals outperforms XGBoost when
used as an end-to-end model, indicating that the normalization
and residual calculation steps in the pipeline are beneficial. For
all methods, f-scores are lower than accuracy, and pairwise
discrimination scores are lower than f-scores. Additionally,
these differences are larger for lower performing methods.
For example, the difference in accuracy and discrimination is
0.093 for the ensemble model, while the end-to-end XGBoost
has a difference of 0.143. Random guessing only achieves a
discrimination score of 0.253, half as much as the accuracy
and f-score, a sanity check with basic probability theory (i.e.,
likelihood of getting heads on two random coin flips).

We give the confusion matrix for the ensemble model
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Fig. 7: The distributions of true positives and false negatives
by fotal loss, i.e., loss fraction times duration fraction. Each
bin has a width of 0.025.

1.0
0.12 0.20 0.
0.10 0.10 0. 0.75 0.85 0.
0.78 0.81 0.94 0.92 1.00 1.00 0.8
0.97 0.80 1.00 1.00 1.00 1..00
.00 1.00 0.97 1.00 1.00 1.00 - 0.6
0.96 0.97 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 - 0.4
1.00 1.00 1.00 1.00 1.00 1.00
96 1.00 1.00 1.00 1.00 1.00 1.00
0.2

1.00 1.00 1.00 1.00 1.00 1.00

Duration

Fig. 8: A heatmap showing the fraction of correct labels on the
partial outage test data, binned by loss fraction and duration
fraction (of daylight hours).

in table II, with a total accuracy of 90.8%, a true positive
rate of 85.6%, and a true negative rate of 95.9%. Table III
summarizes the ability of the ensemble model to discriminate
between the pairs of days, noting that the procedure never
labels both days in the pair incorrectly. Figure 7 presents
the distributions of the true positives and false negatives by
total loss, which we define to be the loss fraction multiplied
by the duration fraction. From this chart, we infer that the
threshold of detection for the proposed method is roughly 5%
total loss, below which we do worse than random chance.
Figure 8 is a heatmap showing the fraction of actual positive
outages detected by the proposed method, binned by the loss
fraction and duration fraction (i.e., of daylight hours). Blue
colors show performance better than random chance, and red
colors are worse than random chance. The region where the
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Fig. 9: An easy pair of days to discriminate, 82.2% outage
over 51.5% of the day.
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Fig. 10: A more difficult pair of days to discriminate, 24.1%
loss over 34.7% of the day.

proposed method performs well has a curved boundary in loss
and duration, showing a trade-off in detectability; very low
losses are detectable when they have long durations, while
short duration outages are detectable when the loss is large.
When the loss fraction and duration fraction are both higher
than 40% (> 20% total loss), the proposed method detects the
outage with nearly perfect accuracy.

C. Case studies

In figures 9 and 10, we show two pairs of days from the test
set that were correctly discriminated by the algorithm, i.e., the
“no outage” and “outage” conditions were correctly labeled.
The first example is well above our threshold of detection,
and most predictors correctly discriminated this pair. There
is a large negative deviation in the residuals, with a large
run of values around —4, and a human operator would have
little difficulty identifying this partial outage condition directly
from the power data. The second example is from the frontier
of the region of detectability shown in figure 8; the bin has
an accuracy of 97% but has neighbors that are below 50%.
We consider this to be a more difficult example, that would
challenge a human operator performing a visual inspection.

From tables II and II, we observe that the proposed method
produces about 3.5 times as many false negatives as false
positives; the algorithm is more likely to miss a small partial
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Fig. 11: A example from the set of 190 false positive labels,
incorrectly predicted to have a partial outage.
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Fig. 12: Sub-daily labeling of partial outage times.

outage than falsely claim an outage that is not present. An
example of a false positive is shown in figure 11. The roughly
4% of the “no outage” training days that were incorrectly
labeled positive are typically intermittent cloud conditions with
large power swings. Inspecting the predicted residuals, we note
that they are similar to the expected residuals for short, low
loss outage events. We conclude, therefore, that the proposed
method could be improved by eliminating from the training
data set short, low-loss events that are outside the region of
detectability shown in figure 8.

D. Sub-daily labeling

Finally, we demonstrate the application of the HMM dis-
cussed in §1II-H. Returning to the example shown in figure 10,
the estimated time frame of the outage is shown figure 12. We
mark the time periods with a red circle if the HMM probability
of being in the partial outage state is over 50%. We observe
that the method correctly identifies the synthetic outage in
the afternoon, but the method also marks a partial outage
in the morning, which was not part of the synthetic outage
generation, which we interpret as a false positive. (It is worth
noting, however, that during research and development, the
proposed methods found real partial outages in the training
data that were not previously identified, which were then
manually filtered in later experiments. In other words, it is
possible that there are real—i.e., not synthetic—partial outages
in the training data that were not added by us.)

V. CONCLUSION AND NEXT STEPS

We have presented a data-driven method for automatically
detecting partial outages in PV systems, based on the output of



a collection of nearby generators. This approach is built from
interpretable steps—a data-driven marginal transformation, a
linear regression model, and classification of residuals. It
nonetheless adapts to complex site conditions such as local
shading and encodes rich information about the similarities
between nearby systems, which dynamically change over the
course of a day. We find that the proposed methods performs
very well on a synthetic partial outage data set, outperforming
an off-the-shelf implementation of XGBoost.

What we have presented here is a prototype method, that
will require additional research and development to opera-
tionalize for industry. We suspect the methods described here
can be improved through eliminating short-duration, low-loss
outages from the training data set. Future work may also
include exploring the effect of training set size on classifier
performance and evaluating the efficacy of the proposed meth-
ods with a much shorter training period, on the order of weeks
or months, i.e., looking at the “cold start” problem.

We plan to make the training and test data curated for this
work public and available to other researchers. Please reach
out to the lead author if you are interested.
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