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Background: More Data, More Opportunities

Increasing volume of photovoltaic (PV) system performance data creates opportunities for
monitoring system health and optimizing operations and maintenance (O&M) activities.
Digital O&M $9b industry by 2024 (“The State of Digital O&M for the Solar Market”,
Greentech Media, 10/10/19)
However, classic approaches—waterfall analysis, performance index analysis—require

A significant amount of engineering time
Knowledge of PV system modeling science and best practices
Accurate system configuration information
Access to reliable irradiance and meteorological data
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New Approaches are Needed
For these reasons, existing PV system

performance engineering methods are focused
on utility scale power plants...

...rather than the rapidly increasing number of
distributed rooftop systems.

Image credit: SunPower Corp. Image credit: Google Earth
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Utility vs. Distributed

Utility Distributed
Site model 3 7

Irradiance data 3 7

Meteorological data 3 7

People / PV system > 1 � 1

New approaches needed to analyze and
managed distributed PV
How to extract insight into system health
from only a power signal?
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My Work So Far

Proposed “PVInsight” to the U.S. Department of Energy Solar Energy Technologies Office
(DOE SETO), which was successfully funded over two years (FY 2019-2020)
One journal paper and one conference paper

B. Meyers, M. Deceglie, C. Deline, and D. Jordan, “Signal Processing on PV Time-Series Data: Robust
Degradation Analysis without Physical Models,” IEEE Journal of Photovoltaics (accepted)
B. Meyers, M. Tabone, and E. C. Kara, “Statistical Clear Sky Fitting Algorithm,” Proc. of IEEE 45th
Photovolt. Spec. Conf., 2018.

Three conference oral presentations
IEEE Photovoltaics Specialists Conference (2018, 2019)
NREL Reliability Workshop (2019)

Two published open-source Python projects
solar-data-tools: https://github.com/slacgismo/solar-data-tools
StatisticalClearSky: https://github.com/slacgismo/StatisticalClearSky
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Background on Demixing Signals

yt = (x0)t + · · ·+ (xK )t ∈ Rp

Given yt , estimate its components xk
Generally a highly underdetermined problem, but many useful approaches are possible

Filtering, PCA, ICA, NMF, basis pursuit
Common themes:

Maximize independence or minimize correlation between components
Impose low-complexity constraints on components

B. Meyers Qualifying Exam Stanford EE Dept. 8



Motivation Methodology Applications Next Steps Appendices

Background on Demixing Signals

yt = (x0)t + · · ·+ (xK )t ∈ Rp

Given yt , estimate its components xk
Generally a highly underdetermined problem, but many useful approaches are possible

Filtering, PCA, ICA, NMF, basis pursuit
Common themes:

Maximize independence or minimize correlation between components
Impose low-complexity constraints on components

B. Meyers Qualifying Exam Stanford EE Dept. 8



Motivation Methodology Applications Next Steps Appendices

A Brief History

Many names: blind source separation, disaggregation, decomposition, trend estimation...
Fourier analysis formalized in late 18th to early 19th century (Fourier, Lagrange, Gauss...)
PCA invented by Karl Pearson in 1901
Trend-cycle decomposition and smoothing developed by Frederick Macaulay in the 1920s
Sinc interpolation and low-pass filtering developed by Whittaker, Nyquist, Kotelnikov,
Shannon in 1930s-1940s
Colin Cherry defined and named the “cocktail party problem” in 1953
ICA first developed by Jeanny Hérault and Bernard Ans in mid-1980s

Refined by Hyvärinen in 1999

Basis pursuit proposed by Chen, Donoho, and Saunders in 2001
Contextually supervised source separation proposed by Wytock and Kolter in 2013
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Optimal Signal Demixing (OSD) Problem

minimize
x0,...,xK
θ0,...,θK

K∑
k=0

λkφk (xk , θk)

subject to yi ,t =
K∑

k=0

(xk)i ,t for (i , t) ∈ K

Optimize over variables xk ∈ Rp×T and θk ∈ Rmk for k = 0, . . . ,K
xk are demixed components with x0 being the noise term
θk are optional extra variables for parameterized models

y ∈ Rp×T is the observed signal (problem data) with set of known entries K
φk : Rp×T → R ∪ {∞} defines the class of component xk
λk ≥ 0 trade off between importance of components’ costs (λ0 = 1 by convention)
If all φk are convex in xk and θk , it is a convex optimization problem
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Component Classes

Smaller φk(x) → more plausible xk is
λkφk(x) can be interpreted as negative log-likelihood (assuming independence)
Constraints can be incorporated in any class cost function by defining the function to be
equal to infinity if constaints are violated
For many useful choices of φk , OSD is a quadratic program (QP)
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Noise Component Classes (p = 1)

Class Description φ(x)

Small, Gaussian
∑T

t=1 x
2
t

Small, Laplacian (“spikey”)
∑T

t=1 |xt |

Small, skewed, set quantile τ
∑T

t=1
[1
2 |xt |+

(
τ − 1

2

)
xt
]

Huber (thick-tailed Gaussian), set breakpoint a
∑T

t=1

[{
1
2x

2
t |xt | ≤ a

a
(
|xt | − a

2

)
|xt | > a

]

B. Meyers Qualifying Exam Stanford EE Dept. 12



Motivation Methodology Applications Next Steps Appendices

Structured Component Classes—Convex Examples (p = 1)

Class Description φ(x)

Smooth, slowly changing average
∑T−1

t=1 (xt+1 − xt)
2

Smooth, slowly changing slope
∑T−2

t=1 (xt+2 − 2xt+1 + xt)
2

Piecewise constant (heuristic)
∑T−1

t=1 |xt+1 − xt |

Piecewise linear (heuristic)
∑T−2

t=1 |xt+2 − 2xt+1 + xt |

Periodic, period q xt+q = xt for t = 1, . . . ,T − q

Monotonically increasing xt+1 ≥ xt for t = 1, . . . ,T − 1

Autoregressive, known coefficients αi xt = α1xt−1 + · · ·+ αrxt−r for t = r + 1, . . . ,T

Linear model, new parameter θ x = Aθ
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Structured Component Classes—Non-Convex Examples (p = 1)

Class Description φ(x)

Piecewise constant (exact)
∑T−1

t=1 1 (xt+1 − xt 6= 0)

Piecewise linear (exact)
∑T−2

t=1 1 (xt+2 − 2xt+1 + xt 6= 0)

Autoregressive, unknown coefficients θi xt = θ1xt−1 + · · ·+ θrxt−r for t = r + 1, . . . ,T

Discrete feasible values in set F xt ∈ F for t = 1, . . . ,T
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Classic Examples of Filtering and Smoothing (K = 1)

Hodrick-Prescott filtering1

φ0(x) =
∑T

t=1 x
2
t

φ1(x) =
∑T−2

t=1 (xt+2 − 2xt+1 + xt)
2

Total variation denoising2

φ0(x) =
∑T

t=1 x
2
t

φ1(x) =
∑T−1

t=1 |xt+1 − xt |
Quantile smoothing3 (set quantile 0 < τ < 1)

φ0(x) =
∑T

t=1

[ 1
2 |xt |+

(
τ − 1

2

)
xt
]

φ1(x) =
∑T−2

t=1 (xt+2 − 2xt+1 + xt)
2

1C. E. V. Leser, “A Simple Method of Trend Construction,” 1961.
2L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” 1992.
3K. Abberger, “Quantile smoothing in financial time series,” 1997.
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Missing Data: Imputation and Validation

Problem data y ∈ Rp×T may have missing entries (?, NaN, etc.)
(i , t) ∈ K are the known entries of y
Imputation:

Solve OSD problem to estimate x0, . . . , xK
For (i , t) /∈ K, we guess ŷi,t = (x0)i,t + · · ·+ (xK )i,t

Validation
Hold out some entries of y to make set K′, and then compare with imputed value
Measure:

∑
(i,t)∈K′ φ0(yi,t − ŷi,t)
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Convex Heuristics for Non-convex Cases

Many useful φk are convex
We can evaluate non-convex φk , but typically can’t solve exactly
`1-norm approximation for cardinality minimization problems4

All total-variation type problems: edge detection, piecewise constant functions, piecewise
linear functions, lasso regression
Compatible with polishing, iterative reweighting, and other heuristics for improving sparsity

ADMM for mixed-integer constraints5

Alternating convex optimization for biconvex φk ’s

4Candès, et al., “Enhancing sparsity by reweighted L1 minimization,” 2008.
5Takapoui, et al., “A simple effective heuristic for embedded mixed-integer quadratic programming,” 2017.
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System Capacity Change Detection

Problem: Detect equipment failure as a step-change in apparent PV system capacity

Component Class φ(x , θ) λ

x0 small, Laplacian
∑T

t=1 |xt | 1

x1
smooth and 365-day

periodic with linear offset

{∑T−2
t=1 (xt+2 − 2xt+1 + xt)

2 + θ2 xt+365 − xt = θ

∞ xt+365 − xt 6= θ
15

x2
iteratively weighted (w (j)

t )
piecewise constant

∑T−1
t=1

∣∣∣w (j)
t (xt+1 − xt)

∣∣∣ 100
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Soiling Analysis

Problem: Estimate soiling rates and energy loss from system performance index (PI)

Component Class φ(x , θ) λ

x0 small, Gaussian
∑T

t=1 x
2
t 1

x1
smooth and 365-day

periodic

{∑T−2
t=1 (xt+2 − 2xt+1 + xt)

2 xt+365 = xt

∞ xt+365 6= xt
10

x2
iteratively weighted (w (j)

t )
piecewise linear

∑T−2
t=1

∣∣∣w (j)
t (xt+2 − 2xt+1 + xt)

∣∣∣ 0.1
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Next Steps

Continued literature review to establish connections with previous work
Manuscript on proposed framework
Python software package implementing framework, to be referenced in manuscript
Continued application of methods to energy analysis problems
Apply to forecasting and MPC problems
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Appendix A: Additional background and papers on signal demixing
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Background on Signal Separation

The separation of a set of components from a set of mixed signals
Colin Cherry defined and named the “cocktail party problem” in 19536

Generally a highly underdetermined problem, but many useful approaches are possible
Problems are generally categorized by

The number of observed channels (single-channel or multi-channel)
The mixture process (linear instantaneous, delayed, convolutive, or non-linear)

Common themes
Look for components that are maximally independent or minimally correlated

Principle component analysis, independent component analysis
Impose some kind of low-complexity constraint on components

Non-negative matrix factorization, basis pursuit, filtering methods

6E. C. Cherry, “Some Experiments on the Recognition of Speech, with One and with Two Ears,” J. Acoust. Soc. Am.,
vol. 25, no. 5, pp. 975–979, Sep. 1953.
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Background: Independent Component Analysis

First proposed by Jeanny Hérault and Bernard Ans in around 1982–1984 (in French)
Refined and clarified by Pierre Comon in 19947

Fast and efficient algorithm proposed by Anthony Bell and Terry Sejnowski in 19958

Modern interpretation is based on maximum likelihood estimation, in which we assume
that sources are independent and non-Gaussian (typically logistic)
Classically, ICA solves multi-channel, linear instantaneous problems, but other extensions
have been proposed
More recently single channel ICA has been explored, with mixed results9

7P. Comon, “Independent component analysis, A new concept?,” Signal Processing, vol. 36, no. 3, pp. 287–314, 1994.
8A. J. Bell and T. J. Sejnowski, “An Information-Maximization Approach to Blind Separation and Blind

Deconvolution,” Neural Comput., vol. 7, no. 6, pp. 1129–1159, 1995.
9M. E. Davies and C. J. James, “Source separation using single channel ICA,” Signal Processing, vol. 87, no. 8, pp.

1819–1832, 2007.
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Background: Dictionaries and Basis Pursuit

Building upon classic representation of periodic signals as collection of sinusoids, many
alternate dictionaries of parameterized waveforms have been proposed

Wavelets, Gabor dictionaries, Cosine Packets, Chirplets, and many more

1988: Ingrid Daubechies proposed the Method of Frames for finding decompositions of
signals into both time and frequency10

2001: Chen, Donoho, and Saunders proposed Basis Pursuit for decomposing a signal into
an optimal superposition of dictionary elements11

Chen et al. used convex optimization to find sparse signal representation, even with
overcomplete dictionaries

10I. Daubechies, “Time-frequency localization operators: a geometric phase space approach,” IEEE Trans. Inf. Theory,
vol. 34, no. 4, pp. 605–612, Jul. 1988.

11S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Decomposition by Basis Pursuit,” SIAM Rev., vol. 43, no.
1, pp. 129–159, Jan. 2001.
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Appendix B: Additional examples
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Classic Examples of Fitting and Smoothing (k = 1)

Hodrick-Prescott filtering
φ0(x0) = ‖x0‖22
φ1(x1) =

∥∥∆2x1
∥∥2

2

Quantile smoothing
φ0(x0) =
τ1T (x0)+ + (1− τ)T (x0)−

φ1(x1) =
∥∥∆2x1

∥∥2
2

`1 trend filtering
φ0(x0) = ‖x0‖22
φ1(x1) =

∥∥∆2x1
∥∥

1

Total variation filtering
φ0(x0) = ‖x0‖22
φ1(x1) = ‖∆x1‖1

Autoregressive model, order r
φ0(x0) = ‖x0‖22

φ1(x1, θ) =

{
0 (x1)t =

∑r
j=1 θj(x1)t−j + θ0 ∀ t

∞ otherwise

Linear regression to time
φ0(x0) = ‖x0‖22

φ1(x1, θ) =

{
0 (x1)t = θ1t + θ0 ∀ t
∞ otherwise

Robust regression (B&V12 example 6.2)
φ0(x0) =

∑n
t=1 huber ((x0)t)

φ1(x1, θ) =

{
0 (x1)t = θ1t + θ0 ∀ t
∞ otherwise

12S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.: Cambridge Univ. Press, 2004
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