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Automating PV Data Analytics

Framing question for this talk: How might we robustly automate the
process of estimating the degradation rate of an installed PV system
when we have no model of the system nor correlated irradiance or
meteorological data?

We’ll explore four different methods that solve common PV data
science tasks.
These tasks will built on each other to achieve the goal above
But the tasks are useful interesting in their own right as well!
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Background: More Data, More Opportunities

Increasing volume of PV system performance data creates
opportunities for monitoring system health and optimizing O&M
activities.
However, classic approaches—waterfall analysis, performance index
analysis—require...

...a significant amount of engineering time

...knowledge of PV system modeling science and best practices

...accurate system configuration information

...access to reliable irradiance and meteorological data
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New Approaches are Needed

For these reasons, most PV system
performance engineering work is
focused on utility scale power

plants...

...rather than the rapidly increasing
number of distributed rooftop

systems.
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How can we deal with all this data?

Today is a heyday of data and applied mathematics...
Probability theory: network traffic management, genomics research,
advertisement click-through optimization
Signal processing: computer vision systems, wearable devices, GPS
Statistics: image classification, clustering, voice recognition

And much more.

Object detection for a stop sign

by Adrian Rosebrock [CC BY-SA 4.0]
Clustering example

by Chire [CC BY-SA 3.0]
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Introducing a new toolbox for PV data science

Today, we’ll be looking at some concepts from applied math and exploring
how we can use them to tackle some common tasks in a PV data analysis
workflow.

Tools in the toolbox
Matrix embeddings (linear algebra), Quantile regression (statistics),
Smoothness metrics (linear algebra), Total variation filtering (signal

processing), KDE clustering (statistics) Generalized low-rank modeling
(linear algebra)

Everything presented here is implemented in BSD 2.0 open-source Python
software:

https://github.com/bmeyers/solar-data-tools

https://github.com/bmeyers/StatisticalClearSky
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Is this Machine Learning?

“Machine Learning”

by Randall Munrow [CC BY-NC 2.5]
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Is this Machine Learning?

Yes, generally this is all under the umbrella of unsupervised machine
learning, the sense that we are learning from data that has not been
labeled.
Also very much in the category of data science.
But this has a unique spin to it: We are generally going to be
exploiting the time structure of the data when looking for patterns
and clusters.
But, we could just as easily classify the techniques according to more
classical domains like statistics and signal processing.
This is not deep ML. We are not employing neural networks.
In fact, our mathematic workhorse will be convex optimization
implemented in cvxpy1 rather than gradient descent.

1Python-embedded modeling language for convex optimization problems
B. Meyers PVRW 2019 Stanford/SLAC 7
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Table of Contents

1 The PV Power Matrix

2 Clear Day Detector

3 Time Shift Fixing

4 Clear Sky Signals and Degradation
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Data Preprocessing

First, extract data from some source (database, csv files, etc.)
Second, put data in usable form (extractions, parsing, joining,
standardizing, augmenting, cleansing, consolidating and/or filtering)

Matrix Representation
We’re focusing on one particularly useful data transformation: putting a
time-series power signal in a matrix.
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Matrix Embedding

Embedding a PV power time series signal in a matrix is a convenient and
powerful way to handle large amounts of data.

p ∈ RT
D =


p1 pm+1 · · · p(n−1)·m+1
p2 pm+2 · · · p(n−1)·m+2
...

...
. . .

...
pm p2m · · · pT

 ∈ Rm×n

m: number of measurements per day
n: number of days in the data set
T = m × n: total number of measurements
Called a design matrix in classic statistics
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Powerful visualization tool
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Matrix embedding makes basic operations very easy!

Daily energy calculation is a
column sum (with a scale factor)

Expected power over a single
day is a row average
Other daily statistics are easily
calculated, e.g. “smoothness,” a
proxy for cloudiness

daily_energy = c * np.sum(D, axis=0)
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Matrix embedding makes basic operations very easy!

Daily energy calculation is a
column sum (with a scale factor)
Expected power over a single
day is a row average

Other daily statistics are easily
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Matrix embedding makes basic operations very easy!

Daily energy calculation is a
column sum (with a scale factor)
Expected power over a single
day is a row average
Other daily statistics are easily
calculated, e.g. “smoothness,” a
proxy for cloudiness

Daily Smoothness (more on this later)
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Practical Considerations
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Practical Considerations

https://github.com/
bmeyers/solar-data-tools
has functions available to help
with prepping data to make a
PV power matrix.
standardize_time_axis will
attempt to “fix” any
inconsistencies in the time
stamps.
A “standard” time axis is one
where there is a constant time
interval between consecutive
entries—evenly spaced
measurements.

B. Meyers PVRW 2019 Stanford/SLAC 15
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How to quickly find clear days in the data set?

Daily energy content

Clear days have more energy
relative to seasonal baseline
Some high energy days can be
partially cloudy
Tool: local quantile regression

Daily smoothness

Clear days are smoother in time
than partially cloudy days
Some very cloudy days can also
exhibit smoothness
Tool: discrete differences

B. Meyers PVRW 2019 Stanford/SLAC 17
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Local Quantile Regression

LQR is a combination of local regression and quantile regression.

Local regression fits a function
to the data within a kernel or
window
This can be recast as a general
convex optimization problem
And then replace the `2 cost
function with the tilted `1
penalty to estimate the local
quantile

B. Meyers PVRW 2019 Stanford/SLAC 18
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Local regression fits a function
to the data within a kernel or
window

This can be recast as a general
convex optimization problem
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function with the tilted `1
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The Elements of Statistical Learning, p. 196,
by Hastie, Tibshirani, and Friedman
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Local Quantile Regression

LQR is a combination of local regression and quantile regression.

Local regression fits a function
to the data within a kernel or
window
This can be recast as a general
convex optimization problem

And then replace the `2 cost
function with the tilted `1
penalty to estimate the local
quantile

See §6.3.3 “Reconstruction, smoothing, and de-noising” in
Convex Optimization by Boyd and Vandenberghe
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Local Quantile Regression

`2 norm fits the local average and `1 norm fits the local (approximate)
median
τ sweeps through the local (approximate) percentiles of the data
τ = 0.9 works best for the clear day baseline: upper envelope fit with
a little permeability
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Discrete Differences and Smoothness

The discrete difference is the analogue of derivatives for discrete signals. It
is a linear transformation (like derivatives), which means it is representable
as a matrix operator. The first order difference is:

d (1)[n] = x [n + 1]− x [n] =⇒ d (1) = Dx (1)

where D ∈ R(n−1) × n is the bidiagonal matrix

D =


−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
...

...
...

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1

 (2)

Higher order differences are constructed by repeated application of the first
operator, exactly like derivatives: d (2) = D2x .

B. Meyers PVRW 2019 Stanford/SLAC 20
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Discrete Differences and Smoothness

Our smoothness metric:

sk =
∥∥D2pk

∥∥
2

pk ∈ Rm is the kth column of the PV power matrix
D2pk measures the local “curvature” of the signal

B. Meyers PVRW 2019 Stanford/SLAC 21
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Discrete Differences and Smoothness

Finally, we do a little rescaling to turn sk into a metric between 0 and 1.

B. Meyers PVRW 2019 Stanford/SLAC 22
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Both Methods Are Imperfect

Not all high energy days are clear, but all clear days are high energy.
Not all smooth days are clear, but all clear days are smooth.

B. Meyers PVRW 2019 Stanford/SLAC 23
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Putting it all together

We can combine the two
approaches to select for
days that are both
high-energy and smooth
Check out
solardatatools.
find_clear_days for an
implementation of this
algorithm!

B. Meyers PVRW 2019 Stanford/SLAC 24
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Time Shifts

Estimate solar noon on each day (energy center of mass)
Filter for clear days using solardatatools.find_clear_days
Total variation filter with seasonal baseline fit (signal separation)
Kernal density estimation (KDE) clustering
Fix the shifts!
solardatatools.fix_time_shifts
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Solar Noon Estimate, a.k.a Energy Center of Mass
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Total Variation Filtering with Seasonal Baseline Fitting

minimize
x ,y ,z

φtv(x) + φsmooth(y) + φhuber(z)

subject to s = x + y + z

yi = yi+365,

365∑
i=1

yi = 0

where s is the measured signal. We model this signal as the sum of three
unseen signals: x a signal with low total variation, y a smooth signal that
is 365-day periodic and sums to zero in a period, and z an error term.

φtv(x) = µ1 ‖Dx‖1 , φsmooth(x) = µ2
∥∥D2x

∥∥
2

φhuber(x) =

{
x2 for |x | ≤ 1
2|x | − 1 otherwise
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Total Variation Filtering with Seasonal Baseline Fitting
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Statistical Clear Sky Fitting (SCSF)2

Putting it all together: robust, accurate, fully automatic PV system
degradation estimation
SCSF fits a site-tuned, data-driven clear sky model without using
classic, physical models
No site information, no on-site data collection besides an inverter
Makes use of everything so far plus Generalized Low Rank Modeling

2“Statistical Clear Sky Fitting,” Best Student Paper Area 8, PVSC45/WCPEC7
B. Meyers PVRW 2019 Stanford/SLAC 31
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How Does SCSF Work?

Starting with the PV power matrix...
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How Does SCSF Work?

Find a low rank approximation...
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How Does SCSF Work?

That estimates the clear sky signal when multiplied back together!
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The Math of SCSF: Generalized Low Rank Modeling

Find a signal that

(1) is low-rank and close to the observed data, (2) is
smooth each day, (3) changes slowly from day to day, (4) has a shape that
is 365-day periodic, (5) is non-negative, (6) contains all energy in the first
column of L, (7) is zero at night, and (8) has a single YoY daily energy
degradation rate.

minimize
L,R,β

φτ ((D − LR)diag(w)) + µL
∥∥D2L

∥∥
F

+ µR

∥∥∥D2RT
∥∥∥
F

+ µR

∥∥∥D(1,365)R̃
T
∥∥∥
F

subject to LR ≥ 0

1T `j = 0, j = 2, . . . , k
Li ,j = 0, i ∈ Z, j = 1, . . . , k

β =
R1,j+365 − R1,j

R1,j
, i = 1, 2, . . . , n − 365
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Brief Notes on Implementation

Problem is non-convex in two spots: the multiplication of L and R
and the ratio definition of β.
Solving this problem efficiently is the topic of the the SCSF Algorithm
(see PVSC45 paper and new paper coming out this year)
https://github.com/bmeyers/StatisticalClearSky implements
the algorithm in a Python class structure
Code has been deployed at scale—cluster of 21 Ubuntu machines
analyzing >22GB of power data from hundreds of PV systems
(completed in 1.5hrs)
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NREL Collaboration: Validation of Degradation Estimate

Working with NREL
to compare SCSF to
RdTools
278 PV systems from
across the lower 48
Median degradation
rates agree to within
0.25%
Standard deviation is
0.6% smaller for
SCSF
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In Conclusion

Matrices are awesome
Math is fun and useful
But especially when combined with software!

https://github.com/bmeyers/solar-data-tools
https://github.com/bmeyers/StatisticalClearSky

We can create robust, accurate, and automated data analysis pipelines
Future work will explore basis representations for clustering and
compression, estimating local system parameters, and automated loss
factor analysis
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Thank you!

Thank you to the GISMo team (past and present)
Laura Schelhas, Prof. Stephen Boyd

Chris Deline, Mike Deceglie, and Dirk Jordan

Questions?

This work is supported by DOE/SU Contract #3468, “PVInsight”
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